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Section 1
Introduction

A security policy is "the set of laws, rules, and practices that regulate how an
organization manages, protects, and distributes sensitive information" [15]. An
adaptive security policy, then, is one in which the ways that an organization
manages, protects, and distributes sensitive information change as the system
evolves. Command and Control systems require adaptive policies to support
trade-offs between system operational capabilities and security in real-world
situations. Situations in which the security policy may need to adapt to better
serve the needs of its users include:

Reconfiguration of System Resources. For example, if a server node fails,
the system might be reconfigured so that some other node becomes the
server and possibly gains privileges that it needs to provide service.

Change in Operational Mode. For example, suppose that scheduling for a
reconnaissance flight is classified as a secret activity. During a battle, a
directive based on top secret information to search a particular area might
need to be given. As another example, a flight control system might ignore
all security checks in light of the imminent destruction of the aircraft.

Such adaptability is essential in the context of defensive information warfare.
For example, there must be some mechanism to change the policy to contain
system processes that become subverted.

Theoretical work has been done regarding the identification of interesting adap-
tive policies and formalization of these policies [8, 18]. In addition, there have
been recent Rome Laboratory efforts to:

m investigate methods for implementing, maintaining, and analyzing secu-
rity in adaptive systems [9], and

» specify systems that must adapt to changing environmental conditions to
meet mission objective [7].

However, little practical experience exists with regard to the feasibility of im-
plementing adaptive security policies. The objective of the work reported here
is to gain that experience, making use of the Distributed Trusted Operating
System (DTOS) prototype.




1.1 Special Issues of Adaptive Policies

Security policies are typically implemented by assigning security attributes to
processes and objects and defining access control rules in terms of the security
attributes. For example, UNIX™™ enforces security by associating user and
group attributes with processes and associating permission bits with files. As
another example, MultiLevel Secure (MLS) systems associate sensitivity levels
with processes and objects and control access based on these levels.

A change in a system’s security policy might be as simple as changing the rules
that define the policy, such as collapsing levels together in an MLS system. In
this case, the security attributes associated with each entity are not changed.
More radical policy changes might alter the kinds of attributes associated with
entities, such as switching from implementing a simple UNIX-like policy to
implementing an MLS policy when a single-level system is added to a multi-
level network during a crisis. Subsequent references to adaptive policies should
be assumed to apply to either type of policy change.

The existing theoretical work focuses on the identification of interesting adap-
tive security policies and formalization of those policies. Our goal was to deter-
mine the feasibility of implementing such policies. We first evaluate the DTOS
design with respect to several issues that we had determined were important
for adaptive security and modified a DTOS prototype based on this evaluation.
We then looked at the theoretical work with respect to this refined DTOS de-
sign. An additional issue relating fault tolerance to adaptive security was also
raised by the theoretical work. The issues originally selected are as follows:

1.1.1  Coupling of Policy and Implementation

Most computer security products are developed to implement a single security
policy. In MLS systems, the level-based security rules are typically hard-coded
into the system. Since MLS is inherent to these systems, changing the policy
to something other than MLS is not practical. Such implementations provide
little if any support for adaptive policies.

1.1.2 Inappropriate Policy Changes

The security policy in effect at a particular time specifies what objects in the
system are protected and what accesses the various processes in the system
are allowed to make to those objects. Thus, the wrong security policy can
allow a process to acquire accesses that should be forbidden, or prevent a



process from acquiring accesses necessary for its mission. Typically, the system
security policy would be analyzed before deployment to ensure correctness.With
adaptive policies, errors can be introduced by policy changes being made by
unauthorized users or at inappropriate times.

1.1.3 Stale Cached Security Data

For efficiency reasons, system components that enforce a policy may cache
policy information. Page tables may contain protection bits for allocated pages
of memory. When the policy changes, cached security information may become
incorrect. Invalidating such cached data can be prohibitively expensive [10].

1.1.4 Reassigning Security Attributes

For those adaptive policies in which the security attributes associated with
entities are changed, provisions must be made for determining the new security
attributes to assign to each entity. The possible changes include both values
for specific attributes and the set of attributes that make up a context. For
example, a node failure in a distributed system may require the assignment of
levels to each entity of the node that takes over the failed node’s responsibilities.

1.1.5 Recovering from Changes

A commonly hypothesized use of adaptive security policies is to temporarily
weaken security mechanisms to provide greater availability. For example, mil-
itary units under attack might be given access to classified intelligence data
that they need to counter the attack. While the security mechanisms are weak-
ened, the classified data might leak into unclassified files. When the stronger
security mechanisms are enabled at the completion of the attack, they cannot
adequately protect the data. Even though the stronger mechanism will prohibit
users with a clearance of unclassified from reading classified files, those users
will be permitted to read the unclassified files containing the classified data. If
temporary changes to weaker policies are to be supported, a solution must be
developed to identify and sanitize contaminated files.

1.2 Document Overview

The report is structured as follows:




= Section 1, Introduction, defines the scope and this overview of the doc-
ument.

» Section 2, DTOS Overview, reviews the DTOS system and its approach
to security.

= Section 3, DTOS Updates, describes updates to the DTOS design and its
security policy to address the requirements of adaptive policies listed in

Section 1.1.

« Section 4, Implementation Using DTOS, discusses the effort to imple-
ment adaptive policies using DTOS.

a Section 5, Assess Feasibility, assesses the feasibility of implementing
various approaches on the DTOS architecture.

s Section 6, Fault Tolerance and Security, examines how fault tolerance
and security interact.

a Section 7, Conclusion, summarizes the results of this work and discusses
open issues.



Section 2
DTOS Overview

DTOS was designed around a security architecture that separates enforcement
from the definition of the policy that is enforced. This architecture allows
the system security policy to be changed without altering the enforcement
mechanisms. The policy is defined as a function from the security context of the
subject making an access and the security context of the object being accessed
to a set of permissions. Enforcement consists of determining whether the
permissions specified by the policy are adequate for an access being attempted.
The generality of the DTOS security architecture has been studied as part of
the DTOS program [20]. The conclusion of this study is that a large variety
of security policies, useful for both military and commercial systems, can be
implemented.

The basic DTOS design is a microkernel, which implements several primitive
object types and provides InterProcess Communication (IPC), and a collection
of servers which provide various operating system services such as files, au-
thentication, and a user interface [5, 13]. Of particular interest is a Security
Server that defines the policy enforced by the microkernel and also possibly by
other servers. When a request is made for a service provided by the microker-
nel, the microkernel sends identifiers for the security contexts of the subject
and of the object to the Security Server. A context contains attributes about
a subject or object that are necessary for making security decisions (since the
information that makes up the context is dependent on the policy, the actual
contexts are local to the Security Server and are not available to the microker-
nel). The Security Server then computes permissions for the context pair, as
defined by the policy that it represents, and replies to the microkernel. Finally,
the microkernel determines if the permissions required for the request were
present in the reply. Other servers can communicate with the Security Server
in a similar fashion.

For example, a Security Server implementing an MLS policy might maintain
subject and object contexts consisting of a level and grant a write permission
if the level for the object security identifier dominates that of the level for
the subject security identifier and read permission if the level for the subject
identifier dominates that for the object identifier (both permissions are granted
if the levels are equal). A file server would check for write permission before




allowing a request to alter a file. Conversely, a Unix-style Security Server might
maintain a user and a group for each subject context and an owner, group, and
access control bits for each object context and grant permissions from the access
control bits depending on whether the user in the subject context matches that
of the owner and whether the groups match.

A prototype DTOS microkernel and Security Server has been built by Secure
Computing. The microkernel is based on Mach, developed at Carnegie Mellon
University [12, 17]. The object types implemented by the microkernel include
task, thread, and port.

Tasks and threads represent the active subjacts, or processes, in the system.
Each task has a security context that is used for security decisions involving
that task. The state of each task includes a virtual memory consisting of a set
of disjoint memory regions, each of which is backed by a server that is used to
swap pages of the region in and out of physical memory. Each task contains
a collection of threads, each of which is a sequential execution, that share the
task’s virtual memory and other resources. A server is implemented as one or

more tasks.

The ports are unidirectional communication channels that the tasks use to pass
messages. Tasks use capabilities, kept in a task name space, to name ports.
Each capability specifies the right to either receive from or send to a particular
port. These capabilities may be sent to another task in a message. For each
port, there is exactly one receive capability and therefore at most one task can
receive from the port (no task is able to receive from a port for which the receive
capability is in transit rather than in a name space). IPC is asynchronous in
that messages are queued in the port and the sending task does not wait until
its message has been received (an exception is when the microkernel is the
receiving task, in which case the sender waits until the microkernel finishes
processing the message).

Sending or receiving a message is a Mach microkernel operation to which DTOS
has added security controls that enforce the security policy. Thus, possession
of the appropriate capability for a port is necessary but not sufficient in order
to send or receive a message from that port. The security contexts of the task
and the port must also permit the operation. The policy also constrains what
capabilities may be passed in a message sent or received by a task.

The Security Server receives requests from the microkernel through the mi-
crokernel security port and from other servers through a general security port.
Requests contain an operation identifier (allowing the Security Server to spec-
ify history-based policies that depend on the sequence of operations made on
an object), a subject security identifier SSI (representing the security context



of the subject), an object security identifier OSI (representing the security con-
text of the object), and a send capability for a reply port. The Security Server
replies by sending the permissions for that pair to the reply port (Figure 2-1).
Not shown in this figure is the fact that the Security Server both defines and

Microkernel
. Operation Security port )
Microkernel Security Server

| < (" Microkernel SecId -> Context
lCache Permilssions k\ reply port Translation
///////' Permissions
General Y
Net Server Security port File Server
reply port reply port
(SSI,0SI)
Operation
L

Network Server File Server

Figure 2-1: Security Server Interaction

enforces a policy for the requests that it receives. It might allow security deter-
mination requests from some subjects, but not from others. Similarly, it might

allow security determination requests from a particular subject only for certain
(SSI,08I) pairs.

Security enforcement as described above would be very expensive due to the
large number of messages that must be exchanged between the microkernel
and the Security Server. The solution in DTOS is to cache (SSI,OSI) pairs with
their permissions in the microkernel [13]. When the microkernel receives a
request, it first looks in the cache for the appropriate (SSI,OSI) pair. If that
pair is in the cache, the microkernel uses the cached entries. Otherwise, it
sends the pair to the Security Server to determine the permissions, usually
also caching the reply (part of the permission set returned is permission to
cache the reply — caching is not permitted for permissions granted for a single
operation by a dynamic policy). Since sending to and receiving from a port are
microkernel operations controlled by the policy, the cache must be preloaded
with permission for the Security Server to send and receive from the designated
ports.




The DTOS prototype is available for use in studying secure systems. This avail-
ability and the separation between policy and enforcement made it attractive
for studying adaptive security. The work described in this report discusses
refinements to the design that are important for these policies.



Section 3
DTOS Updates

We studied the DTOS design and the security policy with respect to require-
ments of Adaptive Security Policies described in Section 1.1. We then specified
updates to the design and the policy that would correct any shortcomings that
we found. The particular requirements addressed were:

» the ways that a policy change can occur and how those changes are con-
trolled,

= the places where security policy information is cached and the ways that
these caches can be controlled, and

» auditing of system actions during times of relaxed security.

Proposed changes have been discussed with the DTOS team and modifications
to the DTOS prototype and documentation have been scheduled where appro-
priate.

The designs for the DTOS microkernel and the initial Security Server, which
supports an MLS policy enhanced with Type Enforcement [2, 16], were studied.
These designs were as specified in the Formal Security Policy Model (FSPM) [19]
and the Kernel Interfaces Document (KID) [21] and supplemented where nec-
essary by looking at the implementation. Any errors or inconsistencies found
during this study were reported to the DTOS team.

3.1 Changing Policies

Three methods were examined for changing the security policy enforced by
DTOS:

1. Several policies are incorporated into a single Security Server and an
interface to switch between policies is provided.

2. The current Security Server passes the receive capability for its security
port to another Security Server that implements the new policy.




3. Some external agent designates a new security port that is received from
by a different Security Server.

The first two methods were tested using the prototype, as described in Section 4.
While the third is implemented in DTOS, it is not as useful for adaptive policies
as the first two.

The first method is appropriate for table-driven policies, such as those sup-
ported by the initial DTOS Security Server. This Security Server determines
permissions for a subject to an object by using the security contexts of the
subject and the object as indices into the table. The selected entry contains
the permitted accesses. Thus, the table specifies the policy and changing to
a new table changes the policy. The Security Server provides a command
SSI_load security_policy that is used to replace the table (the initial DTOS
Security Server receives this command on its general security port). The abil-
ity to replace the table is restricted to those subjects with ss_gen_load policy
permission in the current security policy.

This method is also useful if the translation between security identifiers and
contexts is table driven. The context of a group of subjects sharing a security
identifier can be changed by reloading this table. This mechanism seems to be
especially useful when an MLS policy adapts by combining levels as discussed
in Section 5. Unfortunately, the initial DTOS Security Server that we used does
not use a table to make this translation (such a table has been added to the
latest version), so we did not implement and test changing tables that define
the security identifier to context mapping.

The second method, passing the receive capability for a security port, also
requires the cooperation of the current Security Server. A Security Server pro-
vides a command SSI_transfer_security_ports (not originally provided by the
initial DTOS Security Server) on its general security port, to which it replies
with the receive capability for that port. This command is controlled by the
current security policy in the same way that the SSI load_security_policy
command is controlled: only subjects with ss_gen_transfer_policy permission
may issue this command. The initial DTOS Security Server design was ex-
tended to recognize this request and to return receive capabilities for both
security ports to the handoff port specified in the request (Figure 3-2).

Transferring capabilities on DTOS from one task to another entails several se-
curity checks. While the receive capability for the microkernel security port is
in transit, no Security Server can receive requests from the microkernel during
this transfer and the permissions required must be cached in the microkernel.
For the old Security Server these include: av_can _send and av_transfer right to
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Figure 3-2: Security Server Handoff

the handoff port through which the transfer occurs, and av_transfer_receive
to the microkernel security port being transferred. For the new Security
Server these include: av_can_receive to the handoff port, and av_hold_receive
and av_can_receive to the microkernel security port.

For the DTOS design, the only permissions that can be guaranteed to be cached
are those wired into the cache when the system is booted. Thus, the wiring of
Security Server permissions cannot be done if a Security Server can have an
arbitrary security context, and we assume that there is some fixed context in
which every Security Server operates. A more flexible design would be to add an
avc_wire_cache command sent to the microkernel host port. This command
could be used by both the old and the new Security Server before the handoff to
ensure that the required permissions are in the cache (and possibly afterward
to again make these cache locations available). Since this command was not
necessary to test the handoff mechanism, we did not implement and test it (this
command is on the list of possible DTOS enhancements).

The third method, designating a new security port, is needed for booting the
system and for recovering from a Security Server failure, although it can also
be used to switch Security Servers. A client of the Security Server, such as
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the DTOS microkernel, is notified of the designated security port through a
sec_set_security _server command, which requires set_security_server permis-
sion. Of course, if this command is to be used in a catastrophic situation,
this permission must be wired into the cache. This method provides for no
coordination between the old and the new policies.

If a client can have several simultaneous outstanding Security Server requests,
a policy switch can result in a sequentialization problem, caused when an access
determination according to the old policy is received after access determinations
according to the new policy. Thus, operations permitted by the new policy might
be disallowed by the old policy after state changes permitted by the new policy
have occurred. To alleviate this problem, policy determinations are tagged
with a policy sequence number. If a client receives an access determination
with a lower policy number than a previously received determination, it can
discard the later determination and request it again. With the first method
for changing the security policy, the Security Server increments the policy
number when it executes a SSI_load security_policy command. With the
second method, the old Security Server increments the policy number when
it executes a SSI_transfer _security_ports command and then transfers this
number to the new Security Server along with the receive capability. With the
third method, the policy number must be managed and assigned by the agent
that sets the security port.

All three methods have been implemented in the DTOS system (the
SSI_transfer_security ports was implemented as part of this work). Ex-
periments have been run utilizing the first two, providing a proof-of-concept for
them. In particular, we have not found any deadlocks or other problems that
occur during a policy change. The old and the new policies tested have been
similar — each is a combination of MLS and Type Enforcement, as found in the
initial DTOS Security Server.

On a distributed system, the Security Server would be distributed with a local
representative on each node. This architecture provides the additional problem
of maintaining coherence of the policy during a policy change. One solution is
to maintain policy data in distributed virtual memory, for which coherence has
been widely studied. We therefore would not expect any difficulties, but since
the DTOS prototype operates on a single server we were not able to run any
tests.

12



3.2 (Cache Control

For efficiency reasons, system components that enforce a policy may cache pol-
icy information. Such caching is done by the DTOS microkernel. Also, most
memory systems cache permissions for access to allocated pages of memory
in page table protection bits. When the policy changes, cached security infor-
mation that becomes incorrect must be invalidated. The DTOS microkernel
design contains mechanisms for invalidating its cache, but not the page table
protection bits.

The cache correctness problem can be handled by clearing the cache when the
policy changes. In the DTOS design, the ave_flush cache command, which
requires flush_permission permission, allows the Security Server to signal the
microkernel that the policy has changed and that any nonwired cached infor-
mation may be wrong (any permissions wired into the cache must be correct for
all possible policies). A Security Server sends this command to the microkernel
host port as part of servicing a SSI_load_security_policy command and after
receiving a reply to a SSI_transfer_security_ports command (the new Secu-
rity Server requests that the cache be flushed before it starts to accept requests
for policy determinations). However, this solution does not deal with caches
that the Security Server may not know about, such as one maintained by the
file server.

One solution is to allow service providers that cache access information to
register a cache-control port with the Security Server (Figure 3-2). Then, the
avc_flush_cache command can be sent to all of the registered service providers.
Since the service providers are trusted to properly enforce the cached accesses,
they can also be trusted to register and flush their cache when instructed to
do so. We therefore added a SSI_register_caching server command, which
requires ss_gen_register_port permission, to the Security Server interface. The
SSI_transfer_security_ports command transfers the registered cache-control
ports to the new Security Server, along with the ability to receive from the
security ports and the policy sequence number.

A service provider that switches policies by changing the port on which security
requests are sent (for example, following a sec_set_security_server command)
should flush its cache and register a cache-control port with the (potentially)
new Security Server. To avoid confusion, this port should be different from
the one registered with the old Security Server, which may still be active and
capable of sending ave flush_cache commands. Unfortunately, the DTOS mi-
crokernel does not explicitly register a port, but instead uses the host port for
cache control. We could change this convention, but since we recommend the
SSI_transfer_security_ports command for switching to a new Security Server
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and the use of the sec_set_security server command only in exceptional cir-
cumstances, we have not.

Cache flushing that occurs during a policy change must be synchronized with
outstanding Security Server requests. All Security Server requests from the
microkernel or other servers are sent to the same port and are therefore pro-
cessed in the same order that they are sent. Thus, all secarity requests from a
server for which the replies represent a new policy must have been submitted
after all of those for which the replies represent the old policy.

A problem exists, though, in that replies with old policy information might
arrive after a flush command or after new policy replies. We stipulate that any
old policy information must not be cached after the flush occurs. One solution
is to discard any replies from Security Server requests that were pending at
the time of a flush and to reissue these requests. With the microkernel, this
solution was not needed. An old policy reply arriving after a new policy reply is
equivalent to the case where the old policy reply arrives, the requested operation
is allowed, the thread making this request is interrupted, the new policy reply
arrives, and the thread waiting for this reply proceeds. The only way to avoid
such a situation is to handle one request at a time or to restart all requests that
the server is working on when a flush is received. We chose not to restart the
microkernel operations when it receives a flush.

An alternative to flushing the cache en masse in response to some event is to
incrementally flush it by timing out cache entries. DTOS allows the Security
Server to specify a time bound for caching of permissions. A problem with this
solution is that inconsistencies might arise because the cache contains values
from an old security policy that have not yet expired along with values from a
new policy. However, such inconsistencies might be acceptable in some cases.
For example, suppose each’ entry in the cache is assigned a validity duration
of 1 minute and the system policy changes in response to a declaration of war.
Given the communication delays inherent between the decision to go to war
and the receipt of the message, the fact that there is a 1 minute delay in
the implementation of the new policy might be acceptable. This is analogous
to the distinction between soft and hard real-time systems. Sometimes an
immediate change in the policy is required, while other times a transition
period is acceptable.

There are two places in DTOS that caching occurs outside of the explicit permis-
sion caches. The first is that a capability in a process list represents permission
for that process to have the name of the object represented by the capability
(but not necessarily to use that capability). This raises the issue of whether
a secure system should control who can name an object, or just what can be
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done with that name. In DTOS, the exchange of names between processes, but -
not the holding of names, can be controlled by the security policy. Therefore, a
change in policy cannot negate permission to continue to hold a name.

The second place, which is somewhat harder to deal with, involves the caching of
permissions for access to memory objects in the virtual memory structure. The
permissions for a DTOS task to a region of virtual memory depend partly on the
protection requested for that task and the permission granted by the security
policy. DTOS checks the security policy whenever the protection is changed
using the Mach vim_protect command, but it should also be checked whenever
the policy changes (as signaled by a cache flush or timeout). Unfortunately,
the subject and object security identifiers used to index the cache are not easily
mapped to the set of task and memory region pairs to which they correspond.

For history-based security policies in which individual subject and object secu-
rity identifiers are flushed, the problem is especially severe. One approach is
to keep a linked list of tasks with the same subject security identifier and a list
of object security identifiers for the arguments in Mach vim_map commands.
Whenever an object security identifier in this latter list is flushed, the security
permissions for all memory regions of tasks in the linked list for the subject
security identifier would be recomputed. However, since the focus of our work
is on adaptive policies rather than history-based policies, we have not explored
this further.

When switching to a new security policy, in which the entire cache is flushed
rather than just several selected entries, permissions must be recomputed for
all memory regions. We added this feature to DTOS by iterating through the
tasks and, for each one, through the memory regions (this is on the list of
possible enhancements for the distributed version of DTOS). The protection for
the region is set to be the intersection of the current protection with the new
permissions. )

3.3 Security Identifier to Context Mapping

Security decisions in DTOS are based on identifiers representing the security
attributes (the security context) of the subject attempting an access and the
object being accessed. Different policies might be based on different attributes
and therefore some policies may treat two subjects or two objects differently
while other policies treat them the same. Thus, subjects that are treated
differently in any of the possible policies must have different identifiers and
policies that are coarse in their differentiation among subjects must be able to
treat several different identifiers as representing the same context.
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The initial DTOS Security Server treats a segment of a security identifier
(referred to as the MID, or mandatory identifier) as an encoding of security
level and type enforcement attributes. A policy with coarser levels can be
implemented by changing the test for strict equality among levels to one that
tests for relatedness. Implementing a more fine-grained policy, or one based
on other attributes, requires use of the remainder of the security identifier
(referred to as the AID, or authentication identifier) to differentiate among
subjects and objects that have the same level and type class.

3.4 Auditing

An audit log can provide important information to be used during recovery from
a policy change. If the system records accesses that are permitted during a
period in which the policy is weakened, this record can be analyzed to identify
information flows that violate a stronger policy. Steps can then be taken to
isolate this information.

Only security-relevant events should be audited. Auditing all system accesses
is likely to require a large amount of storage space and processing time. Also,
analysis of such a large volume of information is likely to be expensive. Since
what is ‘security relevant’ will vary with the security policy, determination of
what events to audit should be made by the Security Server. However, the
Security Server cannot itself do the auditing because the microkernel cache
intercepts many of the access checks. Thus, the microkernel must have a
mechanism by which it can be notified by the Security Server of those events
that should be audited.

In this project, we only addressed the problem of determining how policies
changed and what should be audited in a constrained context (Section 5.1.2).
Determining this information automatically would be impossible if the policies
can change in arbitrary ways. In situations where there are a small number
policies with a predetermined set of transitions, auditing information can be
built into a Security Server. In other situations, this might have to be an input
from outside the system.

The DTOS design does not include any facilities for auditing. However, a mech-
anism in the design (that had not yet been fully implemented) provides much of
the required microkernel capabilities. When the Security Server supplies a list
of allowed accesses for a subject security context to an object security context, it
also supplies a list of accesses for which it should be notified. While this facility
was originally intended for use with dynamic security policies, it can be used to
instruct the microkernel to notify the Security Server about security-relevant

16



events. The Security Server is then able to audit the events about which it is
notified.

A couple of extensions to the notification mechanism are useful. The first is a
microkernel switch that allows the Security Server to specify that all security
failures should be reported. If the switch is set (this should be the default
case), the microkernel will notify the Security Server about any accesses that
are attempted in violation of the security policy. The second extension is to
designate a special port for notifications so that notifications are separated
from requests for security decisions. The ability to receive from this special
port can also be passed to a special Audit Server.

3.5 Conclusion

Adaptive security policies can be implemented on DTOS with only a few modi-
fications to the microkernel:

» It must recompute page table permissions when its permission cache is
flushed.

» It must provide an audit port to which it sends a notification of security-
relevant events.

» It must provide a means for specifying which events should be audited.

» It should provide a means for dynamically specifying which entries in the
permission cache must be wired.

As anticipated, the most significant changes required for adaptive policies are
for the Security Server:

= It must specify which events should be audited.

» It must provide a mechanism for registering servers for which it will
provide security information.

= [t can:

- provide a mechanism for handing off capabilities to another Security
Server for the security ports and from the registry,

- provide a mechanism by which the mapping from security IDs to
contexts can be changed.
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Section 4
Implementation Using DTOS

Several changes were made to the DTOS prototype and its initial Security
Server, primarily corresponding to the DTOS analysis described in Section 3.
These changes were tested and, where appropriate, the performance was mea-
sured.

4.1 Audit

Auditing required modifying the microkernel and the Security Server. We also
added an ‘Audit Server’ that interacts with the file system to make the audit
log available for study (an actual server would also analyze and filter the log,
but this was outside the scope of the current project). Finally, we measured the
impact of our changes on system performance and studied a log for sufficiency

of information.

The information supplied by the Security Server to the microkernel includes
a notify vector that specifies the events for which the microkernel should send
a notification to the Security Server. This vector, kept in the cache with the
permission vector for a (SSL,OSI) pair, has a set of flags corresponding to the
flags in the permission vector for that pair. Whenever a permission is checked,
the microkernel also checks the notify vector and if the flag for that permission
is set, a notification is sent-to the security port. We modified the microkernel
so that the notification is sent to a separate audit port so that a server other
than the Security Server can receive notifications, that notifications contain the
information needed for an audit, and that notifications are buffered to reduce

communication overhead.

The first microkernel change was to add a request that sets the port to which
audit information is sent. This was done by combining the request with the
one that sets the security port to form a new host_set_special_port request. A
client needs a send capability to the microkernel host port and set_special port
permission for the microkernel host security context to make this call and
set_audit_port permission to set the audit port.

The next microkernel change was to create an audit buffer. The macro that is
used to make a permission check was modified so that it also checks the notify
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vector and, if the notify flag for the permission being checked is set and there
is a valid audit port, adds a block of information to this buffer. If adding the
block causes the buffer to become full, a full-buffer signal is raised, signaling
that the buffer should be sent.

The last microkernel change was to add two microkernel threads. The first
blocks until a timeout occurs (once each second, provided that the buffer is not
empty) and then sends a full-buffer signal; this ensures that audit information
is regularly supplied to the system even if audited events rarely occur. The
other thread waits for a full-buffer signal, generated when either information
is added to the buffer or a timeout occurs, sends the buffer to the audit port,
and then waits again. Note that if there is no audit port, nothing will be added
to the audit buffer, the full-buffer signal will not be sent, and this second thread
will remain blocked.

Making the Security Server be the receiver for the audit port, possibly by
setting the audit port to be the microkernel security port, allows for most of the
functionality of original notification design. However, the buffering destroys
the synchronization between notification events and permission checks. If this
synchronization is important, notification can be accomplished by not allowing
the appropriate permissions to be cached.

The change to the Security Server consisted of adding the audit vector to its
database. Originally, the Security Server would always send a null notify vector.
This was replaced by code that got a vector from the database, along with the
permission vector. We then modified the database to include these vectors, most
of which were set to no auditing. The exception was for those OSIs that specify
task ports, for which all memory permissions (such as allocate_vm region and
deallocate vm region) are set to audit.

The information audited initially consisted of the SSI and OSI that specify the
permission vector, the permission vector, and the permission being checked.
While this allowed us to determine what accesses were made by a class of sub-
jects to a class of objects, tracing the sequence of accesses made by a particular
subject to a particular object was impossible. We therefore added identifiers for
the task and the thread of the subject.

The usefulness of the task and thread identifiers are due to the way that re-
quests sent to the DTOS microkernel are implemented. Instead of the request
message being added to a port and later received by a microkernel thread, the
client thread traps and continues in the microkernel address space. Thus, the
task and thread identifiers for events performed within the microkernel are
those of the client. The same situation does not apply to requests sent to other
servers. A useful extension would be to add a message identifier to send and
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receive events. We could then link the client thread that sends a message with
the server thread that receives it. Calls by the server to other servers could
also be linked to the client.

Several problems were uncovered while testing the changes. The first was that
if the Audit Server (the task with the receive capability for the audit port)
died, the microkernel would continue to send buffers to the audit port, filling
up memory. The solution was to add code so that the microkernel tests for a
dead port before sending a buffer to it. If the port is dead, auditing is turned
off. The second problem was that the new thread overflowed its stack due to
the size of the audit buffer. The solution was to give it a larger stack than any
of the other microkernel threads. The third problem was that the microkernel
deadlocked when it waited until the audit buffer became full to send it, since
sending it may generate additional audit events. The solution was to trigger
the new thread before the buffer becomes full and to run this thread at a high
priority.

We ran a performance check on auditing, using as a benchmark the compile of
the IPC part of the DTOS microkernel. The results were as follows:

Cost of microkernel audit code. Auditing requires each time a request is
made that the microkernel check whether or not the request should be
audited. We ran our tests without the audit checks compiled in and then
with the audit checks in the code (but all auditing turned off). The result
was an increase of only .12% in the execution time.

Cost of auditing VM checks. When we turned on auditing of virtual memory
checks, the run time of our tests increased by 10.8%. Our tests showed
that this is primarily due to processing by the Audit Server, including the
time required to write the information to a file (although some overhead
is involved in context switches and by the microkernel recording audit
information). Part of the cost of the Audit Server is that the number
of permission checks performed by the microkernel went up 23%, from
279,550 to 344,560. The number of events audited was 125,324, about
36% of the permission checks.

Based on these results, the cost of the audit mechanism is acceptable. When
auditing is not used, the impact is negligible. The amount that it is used
can be specified as part of the security policy and while the effect of auditing a
substantial number of events is noticeable on the system performance, auditing
does not overwhelm the other processing on the system.
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4.2 Handoff

We extended the Security Server so that it could pass control to another Security
Server. This extension included two new commands, code to carry out the
handoff, a server registry, and a policy identifier, as described in Section 3.1.
We then tested a handoff between two Security Servers, each implementing
MLS with Type Enforcement. During this work, we changed the way that the
DTOS microkernel handles outstanding permission checks, which had the side
effect of fixing a sequencing problem which could occur if two permission checks
for the same (SSI,OSI) pair occur concurrently. A problem uncovered was that
extra security permissions are required when a Security Server is started up
from Unix than when it is started during system startup.

The new Security Server commands are SSI_transfer_security_ports
and SSI register_caching server, requiring ss. gen_transfer_policy and
ss_gen . register port permissions respectively. These commands are issued
through the general security port. The SSI_register_caching server com-
mand provides a send capability to a port, which the Security Server stores
in its registry. For testing purposes, we created a special Test server that
registered with the Security Server and then monitored interactions with the
Security Servers.

The SSI_transfer security_ports command provides a send capability to the
port through which the handoff will occur, for which the new Security Server
is the receiver. This command could potentially be initiated by a monitor
subject, rather than the new Security Server, that determines that a special
situation has occurred that requires the policy to adapt. The security identi-
fier for the handoff port must be such that send and receive permission for a
Security Server security identifier are wired into microkernel cache when the
system is initialized. The Security Server receiving the command increments
its policy counter and sends the receive capabilities for both security ports,
the capabilities contained in the registry, and the policy counter to the hand-
off port. Any commands queued in the general security port at the time the
SSI_transfer _security_ports command is issued will be processed before the
handoff occurs, since the SSI_transfer_security_ports command also queued
in this port. Any commands sent to the microkernel security port before the
SSI_transfer security ports command is received may or may not be pro-
cessed before the handoff occurs.

The new Security Server initially reads a policy database from the Unix file
system and then waits for a message from the handoff port. When a message
arrives, it initializes its registry with the capabilities from the old registry and
uses each to send a flush command to the registered servers. It then sends
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an ave_flush_cache command to the microkernel host port (since messages
sent to the microkernel are synchronous, the Security Server will be delayed
until the microkernel receives and responds to this message). Finally, it begins
service by waiting for messages from the security ports.

We looked at the synchronization of policy changes with requests from the
microkernel for policy decisions. In particular, Security Server replies issued
before a flush must not be cached after the flush. This is only a problem if the
reply is received after the flush. The solution adopted is to allocate a cache cell
at the time that a request is made to the Security Server and to mark that cell
as busy. When the flush occurs, all allocated cache cells that are not wired are
moved to the free list, but the cell for the pending security check will remain
busy. A cell on the free list is not reallocated until its busy flag is cleared; the
value returned by the check will be used as the permission for the request,
but will not be cached since the cell into which it is written is on the free list.
This busy flag solution also solves a synchronization problem with concurrent
checks for the same identifier pair. Previously, concurrent checks would have
each generated requests to the Security Server with the possibility that the
reply to the second could arrive before the reply to the first, resulting in a
problem with history-based policies where the sequence of checks is important.
With the busy flag, the second request will delay until the busy flag is cleared
before potentially generating another call to the Security Server.

The solution given here might not work for some other servers, or those servers
might have stricter synchronization requirements. We therefore added the
policy identifiers to replies from the Security Server. This allows a server to
discard ‘old’ replies, especially those received after a flush, or to delay action
on ‘new’ replies received before a flush (since the flush command with these
servers is not synchronous, replies based on a new policy can arrive before the
flush command for the old policy).

This work was more complicated than we had originally anticipated. These
problems were the result of interactions with UNIX during the transfer, as
opposed to starting up a server from the boot process on a bare machine. The
first problem occurred when we tried to load the Security Server, which had
been linked with the Mach linker to the Mach libraries, under the Lites op-
erating system; the environment that Lites establishes was incompatible with
the Mach library. After relinking the Security Server, we discovered that the
security policy did not contain the necessary permissions for a Security Server
to communicate with Lites or for Lites to control a task with the Security Server
security context. For example, Lites could not destroy the Security Server task
after control had been handed back to the original Security Server. We therefore
had to add some new permissions to the policy.
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Security Server handoff has been tested, including a handoff from one server
to a new server and back again, and appears to work as designed. We could
have measured the overhead of a handoff, but since this overhead is an absolute
measure rather than a comparative measure like those that we presented for
auditing, we were unsure of the significance of any of the measurements. For
example, the choice of processor and the operating system on top of DTOS would
have affected our results. Also, the actual handoff is only part of the processing
that occurs in order to produce a policy change. The new Security Server might
need to be started and its tables loaded, which depends on the response time
of the system to the signal to change policies and the size of the tables. We
therefore did not make these measurements, although on our implementation
the time required for the handoff was under a second.

4.3 Page Table Reset

We added a mechanism to the DTOS microkernel to reset the page table protec-
tions when the permission cache is flushed. DTOS calculates the protections
at the time that a memory region is created for a task, using the intersection
of the protections requested and those allowed by the policy. Also, the protec-
tions are recalculated whenever a vim_protect request is received specifying
different protections for a region. This code queries the policy and intersects
the requested protection with those granted by the policy and then sets the
page table protections. To recalculate protections when the policy changes, we
added code that cycles through each memory region of a task, essentially doing
a vim_protect that specifies the current protection. This code is called for each
task with a security identifier affected by a flush.

One glitch that we discovered is that the call by the Security Server to flush the
cache is synchronous. Therefore, if the microkernel tries to reset the page table
permissions during the call, the Security Server will be blocked and unable
to supply the necessary permissions. The solution was for the microkernel to
return from the call immediatedly after starting up a new thread to reset the
page tables.

Concerns about a potential deadlock while the permissions for the Security
Server memory are recomputed turned out to be unfounded, since the old page
table protections remain in effect until the new ones are calculated. Thus,
assuming that the Security Server had permission to execute its code before
the flush command (and that this permission was set in the page table when
the Security Server’s memory was mapped to the code), it would retain this
permission in the page table until the new permission for that region was com-
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puted. However, security checks other than those needed to recompute memory
protections must be postponed until the memory protections are complete. Oth-
erwise, a task could use permissions from the new policy to read from file A and
use permissions from the old policy to write to a memory area backed by file B,
even though neither policy permits the task to transfer from A to B.
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Section 5

Assess Feasibility

The goal of this task was to look at the feasibility of implementing some of
the approaches outlined in the Odyssey Research Associates, Inc. (ORA) fi-
nal report for Rome Laboratory Contract F30602-94-C-0111 [9] on the DTOS
architecture. In particular, we looked at dynamic security lattices and at task-
based access control. We also looked at delegation policies, which can be used
to implement application firewalls. In this section, we show how each of these
approaches can be handled.

5.1 Dynamic Security Lattices

The dynamic security lattice model is a generalization of the security lattice
model normally used to describe transitive security policies such as MultiLevel
Security (MLS). A security lattice consists of a set of security levels that are
partially ordered by a dominates relation. The dominates relation is transitive
(if level Iy dominates /; and /; dominates [; then [y dominates /;), antisymmetric
(if level [y dominates /; and /; dominates /o then [y equals [;), and reflexive (level
lo dominates ly). A dynamic security lattice allows several security lattices to
be represented within a single model and can therefore be used to represent a
class of adaptive security policies. In the following discussion, three different
dynamic security lattice models are presented. They are related in that each
models system entities and the information flows that are allowed.

5.1.1 Background

This section gives some background information on dynamic security lattices,
based on papers by ORA and by Badger[9, 11.

5.1.1.1 Dynamic Security Lattices - ORA Report. In the ORA report, dynamic
security lattices define an effective security lattice, where the dominates relation
is determined by the transitive closure of the information flows that are enabled.
The nodes of the lattice represent potentially different security levels. Nodes
can be collapsed together to enable information flows not allowed by the original
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lattice. This leads to an effective lattice of security levels that is coarser than
the original lattice. The primary advantage of a dynamic security lattice is that
it provides a rough estimate of where sensitive information may have leaked
following a change in security constraints.

In the ORA report, there is a current security lattice that is currently in ef-
fect, as well as an official mandatory security lattice with which the current
security lattice must not disagree. The current security lattice must always be
compatible with the official mandatory security lattice in the following ways:

m If a user is forbidden under any circumstances to learn information, the
user’s level can never dominate the level of the information.

» When information is exported from the system, the information must have
a level that dominates the levels of the sources of the information (unless
there is an official downgrading policy).

Typically, the above constraints imply that all users must be cleared for all
information that they could ever receive. Dynamic security lattices in this case
are a way of enforcing a need-to-know policy.

To help explain the impact of dynamic lattices, the ORA report attempts to
formalize the issues. They assume a computer system (operating system plus
applications software) can be described by the following parameters:

m A set F of possible information-containing entities. This set will include
system variables, files, and users. The level of entity e is represented as

I(e).
s A set A of actions.

» For each action «, there is a set R(a) of entities that are read by the action,
and a set W (a) of entities that are written by the action.

= At any time, there is a set P of permitted actions.

n The effective level lattice with dominates relation > is defined by the re-
quirement that for any two entities v and v, I(v) > {(u) holds if for some
sequence of entities < eg, e1,...,ey > and actions < ag, ay, ...,any-1 > with
a; € P:

- €=U

- Vj < N.e; € R(a;)
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~ Vj < N.ejy1 € W(ay)

- EN =V

To create a policy for a system, the circumstances under which an action will
be enabled, and a set of constraints (policy situation-dependent) on the flow re-
lations are specified. In some circumstances, the granting of new information
flow rights (enabling new actions) may need to be accompanied by the rescind-
ing of other information flow rights in order to prevent the transitive closure
of the flow rights from connecting two entities that should never be connected.
For example, the mandatory security policy might prohibit information from
ever flowing from A to C, although in certain circumstances the current secu-
rity policy allows information to flow from A4 to B. To enforce such a policy,
information flow from B to C is severed when information flow from A to B is
enabled.

5.1.1.2 Dynamic Security Lattices - Badger Paper. The Badger paper [1] pro-
vides the foundation for the technical work presented in the ORA report [9]. In
this paper, relaxation security is expressed in terms of the guarantees that a
trusted system may provide about the manner in which information has been
and will be allowed to flow between subjects and objects. After a security
relaxation, a trusted system is able to provide some smaller set of guarantees.

The Badger paper defines a relaxation lattice as a lattice A of automata which
are identical in every way, except possibly for their state transition relations.
The automata are parameterized by subsets of C where C is a set of security
constraints (i.e., guarantees) which are defined as accesses prohibited for a
subject to an object. An automaton A is less than automaton A’ if its constraints
are a subset of those of A’. Thus, the lattice is oriented such that the automaton
which satisfies the largest set of constraints, and thus accepts the smallest
language, is at the top.

The Badger paper also defines the concepts of relaxation security and strong
relaxation security. During a period in which the set of guarantees that the
system should provide does not change, a relaxation secure system prohibits
the violation of guarantees that the system is still able to support. Intuitively,
a relaxation secure system moves through a number of phases, providing a
particular set of guarantees in each phase. In each phase, a relaxation secure
system will prohibit those operations that would violate currently promised
guarantees which have not already been violated in previous, more relaxed
phases. This definition is motivated by the need to provide guarantees about
what has not happened in a system which permits security relaxation.
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In relaxation security, once a particular information flow has occurred, further
information flow in the same manner is not prohibited. This definition of
relaxation security is not appropriate for all applications. To constrain such
behavior, the Badger paper introduces a set of strong constraints which must
be honored regardless of past violations. Strong relaxation security is similar
to relaxation security with the addition of these strong constraints. Thus, an
operational system may at a particular time have a set of normal constraints
and a set of strong constraints. The strong constraints must be always satisfied
while the normal constraints are satisfied only if they have not been previously

broken.

The ability to relax and reimpose security constraints defines a partial security
recovery scenario: when constraints are reimposed, recovery occurs automati-
cally to the extent that no damage occurred.

A more active recovery is required to enable the use of information that might
have been mislabeled. If possibly mislabeled information has been exported to
the external environment, recovery of the information is not possible, although
the TCB may provide assistance concerning where and to whom information
was disclosed. If possibly mislabeled information has not been exported, recov-
ery to a set of constraints Ci € O is achievable if every subject and object into
which information flowed in violation of a constraint in C; was checkpointed
during system relaxation and if system integrity constraints will permit a roll-
back to the state of these objects before the period of constraint relaxation. In
this case, recovery is accomplished by deletion of possibly mislabeled objects
and substitution of the checkpointed versions. In those cases where a rollback
is not feasible, manual review of mislabeled subjects and objects is necessary

to reestablish security.

Note that in the ORA repart the lattices denote information flow, while in the
Badger paper the lattices denote security constraints. These two notions are
related, however, in that security constraints imply the entities between which
information can and cannot flow in a system.

5.1.1.3 Dynamic Security Lattices - A Simpler Model. While the descriptions
above are adequate for describing MLS systems, they are overly complex and
inflexible. We therefore developed the following simpler formalization of an
adaptive security policy and the resulting dynamic lattice:

= A policy is a directed graph < N, F > where N is the set of information-

containing nodes and F' is the set of directed edges that correspond to the
allowed information flows.
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n The level of a node n, I(n), is isomorphic to the strongly-connected com-
ponent containing n. That is, I(n) ~ {z|n > 2 Az —~ n} (a level is
represented by the set of nodes such that information may flow from each
node of the set to any other node of the set).

» The effective level lattice corresponds to the graph where each strongly-
connected component is represented by a single node.

This description is simpler and uses existing mathematical concepts more di-
rectly. Hence, it is easier to reason about.

The ORA entities E correspond directly to the nodes of the simplified model, V.

An ORA action, a is a multi-edge that carries information from its read set
R(a) to its write set W (a). In the simplified model, that action is modeled by a
collection of allowed flows or edges. For each node z in R(a) and each node y in
W(a), an edge (z,y) is added to F, the set of directed edges.

The ORA notion of permitted actions is not represented directly. At any time,
the set of permitted flows in the simplified model is simply the set of edges, F.
To compare two policies, you must specify two sets of edges.

Two nodes are in the same security level if they are in the same strongly-
connected component. That is, if there exist information flows with zero or
more edges from a to b and from b to q, a and b are at the same security level.

The lattice formed by reducing strongly-connected components to single nodes
defines the effective level lattice. This reduced graph is a directed acyclic
graph (DAG). Here is a place where we can leverage existing definitions and
algorithms. The standard algorithm for finding strongly-connected components
runs in time linear in the size of the graph.

The ORA and simplified models are not isomorphic. The simplified model does
not enforce the clustering of information flows imposed by the ORA model’s
actions. If all the actions of the ORA model had a read set of size one and a
write set of size one, the two models would be isomorphiec.

©.1.2  Using a Dynamic Security Lattice

The ORA and Badger reports defined sets of related security policies, but failed
to indicate how they might be used. For dynamic security lattices to be useful,
we must be able to determine the security impact of operating under multiple
policies. Again, the simpler model is easier to use and understand. In that
model the only possible changes are to add or delete flow edges.
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Start with an initial policy, add or delete some flow edges, and let some infor-
mation containing messages flow over those edges. Now, what happened? Can
we revert back to the original policy? If so, what needs to be done?

Clearly, deleting edges decreases the possible information flows. Nothing “bad”
can happen with respect to the security defined by the initial policy. Any
message sent under the revised policy could have been sent under the initial
policy.

Adding an edge is more complicated.

If the new edge is in the transitive closure of the initial ¥, nothing essential
has changed. The information in that message could have reached the same
nodes using a different path. Note that this assessment depends on a partic-
ularly simple notion of security, ie. the source and destination of the allowed
information flows. Security that depends on enforced paths is not addressed.
For example, in a policy that requires all information reaching node C to pass
through node B, adding an edge from A to C would subvert the policy. More
complicated notions of security are addressed below.

If a message crosses a new edge not already in the transitive closure of F, we
say the message is dirty. A dirty message is one that carries information from
one node to another, but was not allowed by the initial policy.

Clearly, dirty messages must be audited. They will be needed when reverting
from a more permissive to a more restrictive policy.

A node is tainted after it receives a dirty message. Any message leaving a
tainted node is dirty since that message may contain information from a previ-
ous dirty message.

To enable the restoration of security after operation under a permissive pol-
icy, tainted nodes must be sanitized. One simple possibility is to “roll back”
tainted nodes to their untainted state. Either of the standard database schemes,
checkpoint-restore or log-undo, could be used. Roll back of tainted nodesisnot a
complete solution. Physical I/O cannot be undone. Once classified information
is printed and dispersed, it is very hard to recover it. Another weakness of the
roll back scheme is that restoring only the tainted nodes can break more global
system invariants. For example, if two nodes, one tainted and the other not,
count the messages they receive and by design must have equal counts, after
the roll back the counts will differ.
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5.1.3 Dynamic Security Lattice Implementation on the DTOS Architecture

We analyzed how the dynamic security lattice model can be accommodated in
the DTOS architecture and determined enhancements needed to the DTOS
architecture to implement this model. We assume that any security policies
satisfy the information flow transitivity requirements of the ORA dynamic
security lattice model (Section 5.1.1.1). In other words, if information should
not flow between entities A and B, a security policy on the DTOS system must
prevent information from flowing either directly between A and B or indirectly
through intermediate nodes.

We will next discuss three possibilities for implementing dynamic security lat-
tice model security policy changes on the DTOS architecture. These possibili-
ties are changing Security Identifier (SID) assignments, changing the mapping
from SID to security context, and changing the algorithm that decides which
MLS access vector applies to a given situation.

5.1.3.1 Changing Security Identifier Assignments. This section discusses im-
plementing dynamic security lattice model security policy changes by changing
Security IDentifier (SID) assignments. Since DTOS SIDs directly encode infor-
mation including security level and category information, collapsing security
levels for the dynamic security lattice model can be accomplished by assigning
new SIDs to those entities in the system that have SIDs assigned to them. For
example, if the levels secret and top-secret are to be collapsed to the single level
secret, all entities in the system which currently have a top-secret classification
can be assigned new SIDs which give them a secret classification.

Reassignment of SIDs in the DTOS system can be accomplished as follows.
Entities that have SIDs assigned to them in the DTOS system are tasks, ports,
and VM map entries. All tasks, ports, and VM map entries can be accessed by a
task going through the appropriate data structures and changing the necessary
SID assignments. All tasks can be accessed because Mach keeps a queue of all
processor sets and each processor set keeps a queue of tasks assigned to it.
Every task in the system can be accessed by traversing the queue of processor
sets and the corresponding queues of tasks. All ports can be accessed through
the task structures. Each task keeps a queue of threads it contains. All ports
associated with a task can either be accessed through the thread structures
associated with the task or through a table of ports which can be accessed
through the task. All VM map entries can also be accessed through the task
structures. Therefore, starting at the top-level processor set queue, all tasks,
ports, and VM map entries in the system can be traversed and SIDs can be
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reassigned using a list of (FromSID, ToSID) pairs.

While changing SIDs may be fairly easy to implement, the ability to do so must
be programmed into microkernel and also makes reverting to a previous policy
difficult following the combination of several security contexts. Further, the
SIDs for other ports, such as those that name the threads of a task, may be
related to the SID of a task and therefore must be found and updated if the
task’s SID changes. Therefore, a Security Server design in which the SIDs and
security contexts are tightly coupled, such as the initial DTOS Security Server,
should not be used for systems that support dynamic security lattices (as well
as other adaptive policies). We will not consider this solution further.

5.1.3.2 Changing the Mapping from Security Identifier to Security Context. This
section discusses implementing dynamic security lattice model security policy
changes by changing the mapping from SID to security context. Collapsing
security levels in the dynamic security lattice model can then be accomplished
by changing the mapping from SID to security context. For example, if the
levels secret and top-secret are to be collapsed to secret, the SID to security
context mapping would be changed for those entities that were at the level
top-secret so that their security context would indicate that these entities are
now at level secret instead of top-secret, thus effectively collapsing the secret
and top-secret security levels.

Two possible implementations of the mapping are a table in the Security Server
and a Context Server that performs the mapping. Unfortunately, neither was
necessary for the policy specified by the initial DTOS Security Server and
therefore was not included in it. With a table, a change in the mapping of SIDs
to security contexts could then be accomplished by a command that signaled the
Security Server to read in a new table or by switching to a new Security Server
containing a different table. With a Context Server, a change in the mapping
of SIDs to security contexts could then be accomplished by a command that
switches to a new Context Server. A Context Server would probably require
caching in the Security Server and was not used in our work.

5.1.3.3 Changing the Algorithm. This section discusses implementing dy-
namic security lattice model security policy changes by changing the algorithm
that decides which MLS access vector applies to a given situation. Collapsing
security levels in the dynamic security lattice model could then be accomplished
by changing algorithms that affect the list of allowed accesses returned by the

Security Server.
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There are a number of possibilities for implementing an algorithm change in
the DTOS system; four of these possibilities are:

1. Implement multiple algorithms in the Security Server code. A new Secu-
rity Server command would signal a change and specify which algorithm
should be used.

2. Send the executable for the algorithm to the Security Server when an
algorithm change occurs. The Security Server would then map the exe-
cutable to memory (the code would need to be relocatable) and jump to
and execute the executable when necessary.

3. Send the address of a new algorithm executable to the Security Server
when an algorithm change occurs. The Security Server would then jump
to and execute the executable when necessary.

4. Specify the algorithm using some type of specification language. The
Security Server currently gets domain, type, level, category, user, and
access vector information from database files. This information is given
via a specification language. A similar method could be used for changing
an algorithm in that when the Security Server changes algorithms it
looks in a specified file for the specifications for the new algorithm and
then implements this algorithm change.

Depending on the method used to change the algorithm, implementing dynamic
security lattice model security policy changes by changing the algorithm that
decides which MLS access vector applies to a given situation could be fairly
easy to implement. In addition, it seems that there would not be much of
a performance hit to implement algorithm change using the four possibilities
mentioned above.

5.1.4 Non-transitive Extensions to Dynamic Security Lattices

To model more complex security policies such as those built on type-enforced
systems like DTOS, it is necessary to extend the simpler formalism described
above. By attaching types to the messages and domains to the nodes, type
enforcement eliminates the transitive behavior of simple MLS policies.

To model a type-enforced system, a subset of N is denoted as trusted nodes.
Trusted nodes may modify or cleanse the information flowing through them.
For example, a node that labels data before sending it to the printer is a trusted
node. A node that filters top secret data before sending it on to a secret node is
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also a trusted node. These information flows are allowable in a type-enforced
system and can be made non-bypassable, but they do not necessarily imply an
MLS-like ordering of the nodes into levels.

The levels in a type-enforced system, to the extent that they exist, are computed
by first deleting the edges leaving trusted nodes and then finding the strongly-
connected components as before. This modification handles the case described
above where adding an edge could bypass a required node. In a type-enforced
system the node that must not be bypassed would be trusted. Hence, the edge
leaving that node would not be included in the graph used to determine the
levels. Adding an edge that bypassed the trusted node would detectably modify
the allowed information flows.

The trusted nodes must be divided into two classes, robust and fragile. Robust
nodes are trusted nodes that are trusted under any mutation of the security
policy. For example, a dirty word filter can be trusted to always perform its job
regardless of the allowed information flows. It simply removes the dirty words
from any message it receives. Fragile nodes are trusted nodes under one policy,
but are subject to spoofing or failure under changing policies. For example, a
node that adds the “Secret” stamp to any pages passing through it to the printer
is fragile. Under a modified policy that allowed top secret information to reach
the labeler, top secret information would be printed with secret labels.

The rules used to guide auditing and recovery must be extended to handle type-
enforced systems with adaptive policies. In a type-enforced system, messages
leaving a robust node are never dirty. Even though the node may become
tainted and require roll back, the messages that leave it are not dirty. Messages
leaving tainted fragile nodes are dirty. The edges leaving a fragile node are not
considered when computing levels, but the messages may be dirty.

5.2 Delegated Policies: A Specialized Form of Adaptive Policy

Occasionally it would be convenient to temporarily restrict a subject’s permis-
sions. For example, when viewing a PostScript document retrieved from the
World-Wide Web, we would like to restrict the previewer’s file access. The
PostScript previewer is normally run by a trusted user on the internal net-
work, inside the security perimeter. It is usually given permission to read and
write files on the internal network. But, the PostScript programming language
allows reading and writing files, so a piece of external data handed to a “trusted”
internal process may wreak havoc. In this case we would like to tightly restrict
which files the previewer can read or write. On systems where the security
policy is flexible, to the point where vanilla users can modify it, we could simply
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create a new security context for the previewer when reading untrusted data.
But, most secure systems do not allow for that level of flexibility. An alterna-
tive would be to temporarily delegate security decisions to another process. If
done in a controlled way, that process could restrict a particular instance of the
PostScript previewer.

Here is how it would work in DTOS. Rather than start the previewer directly,
start its “delegated security manager” first. That manager process registers
itself with the security server indicating its intent to manage the previewer.
The security server returns a new SID for use by the previewer. Except for
its identity, the context identified by that SID has the same properties as the
normal security context assigned to the previewer. The manager starts the
previewer with the new SID. Whenever the kernel asks the security server
for a decision about the previewer, the security server forms an answer and
forwards it to the manager. The manager modifies the answer and returns
it the security server. The security server ensures that the manager did not
increase the permissions and returns the answer to the kernel.

Even though we did not implement this temporary delegation extension to the
security server, the advantages are clear:

» Unlike most secure systems which try to ensure that only trusted data
reaches trusted processes, here trusted processes can be applied to un-
trusted data. The extension is useful.

» The delegated manager cannot override the mandatory policy enforced by
the security server. The extension is safe.

» The full security server interface can be implemented by the delegated
manager. Not.only can it determine the permissions, but also the cache
and audit characteristics of the managed process. The extension is gen-
eral.

» The kernel and the managed process know nothing about the delegated
manager. The extension is localized to the security server.

= Except for the managed process, the system performs as it did before. The
extension is efficient.

» Very fine-grained, per-process decisions can be enforced without modifying
the system defined mandatory policy. The delegated manager can use
whatever scheme it would like to limit the permissions it grants. The

extension is flexible.




To further improve this scheme, it should be the case that the delegated man-
ager can, if it chooses, be the delegated manager for any subprocesses created
by the process it is already managing. This additional functionality would
require the manager to control any process creation requests on behalf of its
managed process. We did not explore what changes would be required to DTOS
to implement this enhanced functionality.

5.3 Task-based Access Control Policies

This section provides background information on task-based access control poli-
cies as stated in the ORA final report [9]. Note that the term task is used in this
section, as it was in the ORA report, to refer to ‘a piece of work’ rather than a
Mach process. Task-based access control policies make explicit the relationship
between an agent’s privileges and the tasks it must perform. Task-based ac-
cess control emphasizes what needs to be done, rather than what the agent who
will do it is called. In role-based access control policies, related responsibilities
are usually grouped together to form a role. There is an implicit assumption
that related responsibilities should be concentrated in one individual. This
assumption might be wrong or inconvenient for several reasons:

» Giving one individual unconstrained privilege in an area may be danger-
ous. If several people must work together to play what might be concep-
tually considered a single role, they can keep each other honest.

» In a crisis, distributing privileges so that no person becomes a ‘single point
of failure’ may be important.

» Because a task is typically more constrained in time and scope than a role
is, determining the access rights that are needed to perform a particular
task may be easier than determining the access rights that are needed to
fulfill a particular role.

» Task-based access control provides more flexibility than role-based access
control. An agent can be given the authority to do a task only once in a
particular situation. In contrast, a role implies ongoing privileges.

In creating a task-based access control policy for an adaptive system, the fol-
lowing parameters must be defined:

= a collection of scernarios in which the system will have to operate. Each
scenario would be a class of situations.
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= the collection of tasks that may need to be performed for each scenario.

m the collection of actions that may need to be taken to accomplish each
task.

» the collection of objects that are involved in each action, together with the
type of access involved.

A well-known class of security policies that can be implemented using task-
based access control is Clark and Wilson [4]. In these policies, an object is known
as a Constrained Data Item (CDI) and an action is known as a Transformation
Procedure (TP). These policies guarantee that a CDI can only be modified by a
well-formed TP. The other aspect of these policies is separation of duty in which
different tasks are executed by different processes. The example given in [14]
is for the processing of an invoice in a purchasing department. The TPs for this
example are:

» Record the arrival of an invoice.
m Verify that the goods have been received.

» Authorize payment.

Three tasks for this example might be data entry clerks, purchasing officers, and
supervisors. Only a data entry clerk could record the arrival, only a purchasing
officer could verify receipt, and only a supervisor could authorize payment. A
special form of Clark-Wilson policy, called dynamic n-person policies, allow the
dynamic assignment of tasks to subjects [14]. In the purchasing department
example, any of the available subjects could record the arrival of an invoice,
thus becoming the data entry clerk for a particular situation.

In [20] we showed that Clark-Wilson, as adapted to UNIX, can be implemented
on DTOS and would expect other task-based access control policies to pose no
special problems. Each scenario defines a security policy. At the start of a
situation, the system adapts to the appropriate policy. Each task corresponds
to a security context. A subject is linked to a task by mapping its security
identifier to the context for that task. The policy defines the set of actions
allowed for each task and object pair.
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Section 6

Fault Tolerance and Security

We originally planned to use a framework being developed by SRI to construct
an example policy mapping and its inverse and to show how auditing would
be used to recover when reverting from a temporarily-enforced, less-restrictive
policy. However, the result of their work [7] was a framework for resolving
conflicts among critical system properties, rather than for mapping between
policies before and after a policy switch occurs. Among the conflicts studied
was types of faults tolerated on a fault-tolerant system and the overhead of
fault tolerance [6]. Also, the issue of auditing for recovery is already covered as
part of Section 3, DTOS Updates.

An interesting question related to the work in [7], which we explore in this
section, is how fault tolerance and security interact. A service can be made
fault tolerant by replicating it on several nodes that fail independently. Types
of faults that can be tolerated include [3] crash in which a node stops communi-
cating with its environment when it fails, omission in which messages between
nodes are lost, and Byzantine in which a node or link may behave in arbitrary
ways, including sending incorrect results. The model of fault tolerance that
we will use is Primary-Backup, which is suitable for crash and omission faults,
but not for Byzantine faults. One of the replicas is designated as the primary
and the others as the backups. Requests are handled by the primary, with
the results sent to the client and each of the backups as shown in Figure 6-3.
If the primary stops (it does not respond timely to some request), one of the

2 =
Primary State Change » Backup

_J Acknowledgment \_

Client J

Figure 6-3: Primary-Backup Fault-Tolerance Architecture

Reply
Request

backups becomes the primary. The backups acknowledge receipt of messages
from the primary to help determine when they crash, allowing a new backup
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to be started.

The security policy for a system node determines which requests are accepted
and which are rejected. It can be defined as the sequences of requests that
will be accepted. For a fault-tolerant service, requests are sent to the primary,
which decides whether to accept the request. The primary would not send a
notice to the backups for those requests that are rejected. Thus, the system
security policy is the same as that of the primary.

As long as all nodes on the system have the same security policy, switching to
a new primary has no effect on the system security policy. Whether or not a
request is accepted is independent of the node that provides the primary. Note
that part of this requirement is that clients of the service have equal access to
all service nodes; if the communications service does not allow a client to send
a request to the primary node, that request is effectively rejected.

6.1 Security Policy Differences as Faults

The relationship between fault tolerance and adaptive security policies results
from nodes that have different security policies. A distributed system might
span nodes belonging to different organizations, each with its own policy. At the
time that a request for service is made, the policy of the primary may differ from
that of the client or a backup. When a backup becomes the primary, the policy
of that service might change and thus appear to adapt. Alternatively, when the
security policy for a distributed system adapts as the result of a change in the
environment, there will be a transition period during which nodes might have
different policies.

Requests arriving at the primary are either accepted or rejected. For those
requests that are accepted, any state changes must be sent to each backup so
that its state remains consistent with the primary in case the primary fails
and the backup becomes the primary. The security policy for the backup must
allow state change information from the primary, even if the backup would have
rejected the request. Thus, there could be a flow of information from the client
to the primary to the backup that violates a local security policy prohibiting a
flow of information from the client to the backup.

If the backup refuses a state update, either the primary or the backup must
be considered to have the wrong state and to have failed. One way to choose
between these alternatives is to test whether some minimal number ¢ of back-
ups concur with the primary by acknowledging the state change within some
time interval; if not, the primary has failed and otherwise the nonconcurring
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backups have failed. Thus, if the primary has sufficient support for its policy,
backups with a different policy are removed and the system policy will be-
come consistent, even following a failure of the primary. The algorithm for the
primary is shown in Figure 6-4.

do forever
receive request
if request violates security policy then reject
else process request
if state changed then
broadcast request and change to backups
wait an appropriate time interval
if fewer than c acknowledgments then stop fi
mark backups that did not acknowledge as failed
fi
send response to client
fi
od

Figure 6-4: Primary Server

The value of e should be less than half of the total number of active nodes.
Otherwise, thrashing could occur between two policies. For example, consider
a service with a primary and two backups and for which there are two security
policies. If ¢ is 2 (and therefore is greater than 3/2), the primary fails if either
backup does not concur with the acceptance of a request. After choosing a new
primary and starting a new backup, complete agreement on the policy may
still not occur, leading to a sequence of failures. If ¢ is 1, the primary needs
concurrence by only one of the backups (a majority vote). If it does not have
such an agreement and fails, the backup that is chosen as the new primary
will agree in policy with the remaining backup and will be in the majority. A
corollary of this principal is that if there is a single backup, ¢ is 0 and the
backup fails if it disagrees with the primary.

The algorithm in Figure 6-4 uses a blocking protocol in which the primary does
not send a response to the client when it fails, since nodes in the Primary-
Backup model fail by crashing. If there is only a single backup, this algorithm
can be optimized to use a nonblocking protocol by sending the response before
sending the state changes and waiting for the acknowledgment.

The primary in Figure 6-4 does not inform the backups when it rejects a request
or accepts a request that does not change the state of the service. The primary
therefore defines the policy for these cases. An alternative approach is for the
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primary to notify the backups in these cases, thus permitting the backups to
withhold concurrence and cause the primary to fail.

6.2 Policy Transitions

One occasion when the policies of the primary and the backups can be expected
to differ is while the system policy is adapting. A policy change broadcast across
a distributed system will arrive at some nodes before others. Also, some nodes
will process the change more promptly than others. One situation is where the
primary begins using the policy change after the arrival of a request, but the
backups begin using it before they receive the state changes due to the request.
The reverse situation, where the primary begins using the policy change before
the arrival of the request, but the backups begin using it after the state changes,
is also possible.

For the first situation, shown in Figure 6-3, assume that old policy allows the
request but the new policy does not. Since the request arrives before the policy

Requestl TResponse

State Change
(rejected-
B fails)

Backup B

Primary

(old policy)

State Change
Acknowledgment

Backup A

I
I
|
|
|
|
|
(o0ld policy) : (new policy)
|
v

Backup C

(created to replace B)

Figure 6-5: Situation 1: Primary uses Old Policy

change, the primary will accept and process the request. When the state change
is sent to the backups, if at least ¢ backups have not yet received the new policy
and therefore acknowledge the state change, those backups that have received
the new policy will fail. In Figure 6-3, assuming that ¢ is 1, Backup B’s state
becomes inconsistent with the service state as maintained by the Primary and
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Backup A and therefore B fails. What this means is that the service policy
is still the old policy and these failed backups used the new policy too soon.
Eventually, the new policy will reach the primary and the other backups and
the service policy will change. If, however, the backups have received the new
policy and do not acknowledge the state change, the primary will fail. In this
case, the service policy has changed to the new policy and the primary tried to
use the old policy too long. In Figure 6-3, if Backup A was using the new policy,
it also would reject the state change, Primary would fail instead of Backup B,
and either Backup A or Backup B would become the primary.

For the second situation, assume that new policy allows the request but the
old policy does not. This situation covers the case where the ‘old policy’ and
the ‘new policy’ labels in Figure 6-3 are switched. If sufficient backups accept
the state change, the service is enforcing the new policy and backups that fail
tried to use the old policy too long. Otherwise, the primary tried to use the new
policy before it became the service policy.

This procedure generally serializes the processing of requests with policy
changes for a service. The service will continue to use the old policy until
the primary and a sufficient number of backups use the new policy. Nodes
that are out of step with the service policy will be considered to have failed.
However, the second situation above can lead to a serialization failure if the
primary using the new policy fails and is replaced by a backup using the old
policy. For example, consider a service with a primary and two backups with
c=1 such that the primary and one of the backups is using the new policy and
the other backup is using the old policy. A request is accepted by the primary
and the state change is acknowledged by the backup using the same policy as
the primary but rejected by the other backup. The rejecting backup has there-
fore failed and is replaced by another backup which also uses the old policy.
Next, the primary fails, the backup using the old policy becomes the primary,
and a new backup that uses the old policy is started. The policy has reverted

back to the old policy.
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Section 7
Conclusion

This work demonstrates that a client-server architecture, such as DTOS, is
suitable for use in an adaptable secure environment. The facilities needed for
adaptive policies provided by this architecture include:

m A very general enforcement mechanism is separate from the definition
of the policy. Thus, a change in the policy requires a small change in
the system that can be accomplished by either loading a new table or
switching to a new Security Server.

= The ability to cause the policy to change is restricted by making the
changes subject to the security policy.

» Any cached security information can be flushed.

» The security attributes of subjects and objects are represented only by an
identifier outside of the Security Server. The attributes for a particular
entity can be changed, or even replaced by a new set of attributes, by
changing the mapping between security identifiers and security contexts
in the Security Server.

» Mechanisms for auditing can be separated from auditing policy in a man-
ner similar to the separation used for security. Thus, the events that are
audited can be made to depend on the security policy.

Many of these facilities were already present in DTOS. We added facilities for
switching between Security Servers, signaling servers other than the microker-
nel that a policy switch has occurred and that any cached security information
should be flushed, auditing, and flushing page table protections. Most of these
changes are being added to the released version of the DTOS system and there-
fore may be tested in additional ways.

7.1 Open Issues

We have identified several ways in which this work could be extended:
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Additional Policies. The current contract has demonstrated that a server-
client architecture that separates policy from enforcement is suitable for
adaptive policies and it has influenced several changes in the DTOS de-
sign. However, the policy changes tested are small and constrained to
MLS with Type Enforcement. As the prototype is used by other orga-
nizations, additional policies are being implemented and could be used
to provide more extensive tests. Possibilities include a task-based access
control policy and an MLS policy in which levels are collapsed.

Recovery from a Relaxation Policy. A related project is to extend a Secu-
rity Server to recover from a relaxation policy, making use of the audit log
that we produce. The studies by ORA and SRI talk about such recovery,
but the details need to be fleshed out and tried. We put auditing in place
during our current work, but did not provide any analysis of the audit log
and the use of the results in a Security Server.

Delegation Policies. Another extension to the Security Server would be del-
egation in which the policy is adapted to temporarily tighten security for
particular subjects. This requires a Security Server request to register a
monitor for these subjects, and a change to the Security Server so that
it consults the monitor. To test this facility, a monitor would have to be

built.

High-Level Policies. Users of a system think about the security policy in
high-level terms, such as ‘all mail sent from the system must pass through
a filter’ or ‘only the staff and subordinate commanders are allowed to know
the details of the attack plan’. The policy used by the system, however,
consists of types of accesses allowed to particular subjects for particular
objects. Making the translation can be complicated. For adaptive policies,
the situation is worse since several translations are required and also
there might be some mandatory constraints that apply to all of the po-
tential policies. Furthermore, satisfying the mandatory constraints may
depend on what flows have occurred during previous policies. Tools are
necessary to set the policies correctly.

Policy Composition Tool. A particular tool would be one that composed a
policy from policies of the various components. Romulus [11] provided a
theory about combining components satisfying the same restrictive policy
to form a restrictive system. With adaptive policies, however, we envi-
sion a system made up of components that satisfy different policies, some
of which may change. A change in policy potentially can be modeled as
sequential composition of components with different policies. The manda-
tory constraints form the system policy that the composition satisfies.
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This theory needs to be considered further and requirements for such a
tool developed.

Effect of Policy Changes on Applications. Undesired results could occur if
the policy adapts in the middle of the execution on some application. For
example, integrity might be compromised if the policy changes while a
trusted application is in the middle of an update. Provisions for a ‘critical
section’, in which certain accesses are guaranteed, could be provided.
The implementation of such a critical section along with tests should be
performed.
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operatidnal capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.




